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We study entanglement of a pair of qubits and the bipartite entanglement between the pair and the rest within
open-ended HeisenbergXXX and XY models. The open boundary condition leads to strong oscillations of
entanglements with a two-site period, and the two kinds of entanglements are 180° out of phase with each
other. The mean pairwise entanglement and ground-state energy per site in theXXX model are found to be
proportional to each other. We study the effects of a single bulk impurity on entanglement, and find that there
exist threshold values of the relative coupling strength between the impurity and its nearest neighbors, after
which the impurity becomes pairwise entangled with its nearest neighbors.
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I. INTRODUCTION

Over the past few years much effort has been put into
studying quantum entanglement in various quantum spin
models. At zero temperature, entanglement naturally exists in
many-body ground states. The systems contain two classes,
finite spin clusters[1–18] such as a ring of qubits, and infi-
nite spin systems[19–26], where quantum phase transition
[27] may occur. For a ring of qubits interacting via the
HeisenbergXXX Hamiltonian, the ground-state concurrence,
quantifying entanglement of a pair of qubits, is equal to the
absolute value of the ground-state energy per site[2,9]. Uni-
versal scaling behaviors of quantum entanglement of ground
states emerge at a quantum phase transition point in the an-
isotropic XY model [19–21]. Experimentally, the entangled
state of magnetic dipoles has been found to be crucial to
describing magnetic behaviors in a quantum spin system
[28].

In most of the previous studies on entanglement of many-
body ground states, a periodic boundary condition(PBC) is
assumed for spin chains. In compounds such as Mn12 and
Fe8, the metal ions within a single molecule form almost a
perfect ring, which can be described by the Heisenberg in-
teraction[29]. On the other hand, spin chains with an open
boundary condition(OBC) have been used to construct spin
cluster qubits[30,31] for quantum computation and em-
ployed for quantum communication from one end to another
[32,33]. Perfect state transfer has been obtained via the open
chain without requiring qubit coupling to be switched on and
off [33]. These investigations reveal that open chains are of
great advantage in implementing quantum information tasks.
Thus the study of the entanglement structure in open spin
chains will be of importance as the entanglement underlies
operations of quantum computing and quantum information
processing. Here, we investigate open boundary effects on
ground-state entanglement. We also note a recent study of
quantum entanglement in theXXZ model in the presence of
domain walls[34], which can be considered as a kind of
OBC.

A linear openN-qubit chain can be viewed as a ring of
sN+1d-qubit chains with an impurity[sN+1dth qubit], where

the couplingJN+1,1=JN+1,N=0. The impurity plays a very im-
portant role in condensed matter physics, and it will be in-
teresting to see its effect on quantum entanglement. In earlier
studies, impurity effects on entanglement have been consid-
ered with a three-spin small system[35]. Here, we consider
large spin systems described by the HeisenbergXY model.

The paper is organized as follows. In Sec. II A, by exact
diagonlization method, we study the ground-state entangle-
ment in the HeisenbergXXX model with an OBC. The mean
nearest-neighbor entanglement is found be proportional to
the ground-state energy per site. For studying systems with a
large number of sites, in Sec. II B we consider theXY model
with an OBC, which can be solved exactly by Jordan-Wigner
mapping[35]. Entanglements display strong oscillations over
lattice. With increase of the ground-state energy, the mean
pairwise entanglement increases in theXY model, while it
decreases in theXXX model. In Sec. III, we study impurity
effects on entanglement of the spin systems described by the
XY model, where the impurity is located in the bulk of the
system. We conclude in Sec. IV.

II. BOUNDARY EFFECTS

A. HeisenbergXXX model

We consider a physical model ofN qubits interacting via
the isotropic Heisenberg Hamiltonian with an OBC,

HXXX=
J

2o
i=1

L−1

s1 + sixsi+1x + siysi+1y + sizsi+1zd, s1d

wheresW i =ssix ,siy ,sizd is the vector of Pauli matrices andJ
is the exchange constants. The positive and negativeJ cor-
respond to the antiferromagnetic(AFM) and ferromagnetic
(FM) case, respectively.

The SU(2) symmetry sfH ,Sag=0d is evident, whereSa

=oi=1
N sia /2 ,aP hx,y,zj. This symmetry guarantees that re-

duced density matrixri j of two qubits, say qubiti and j , for
the ground stater has the form[2]
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ri j =1
uij 0 0 0

0 wij zij 0

0 zij wij 0

0 0 0 uij

2 s2d

in the standard basishu00l , u01l , u10l , u11lj.
From the reduced density matrix, the concurrence[37]

quantifying the entanglement is readily obtained as[2,9]

Ci,j = 2 maxf0,uzij u − uijg = maxf0,uGi,j
xxu − Gi,j

zz/2 − 1/2g

= maxs0,uGij
zzu − Gij

zz/2 − 1/2d = maxs0,− 3Gij
zz/2 − 1/2d,

s3d

whereGij
aa=Trss1as2ard are correlation functions. The sec-

ond equality follows from the relations between matrix ele-
ments of ri j and correlation functions given byuij =s1
+Gij

zzd /4 and zij =Gij
xx/2. The SU(2) symmetry leads to the

third equality. The fourth equality follows from the inequal-
ity uGij

zzuø1, which is a special case of a more general result
that ukAluø1 for any Hermitian operatorA satisfyingA2=1.
We see that the qubitsi and j are entangled ifGij

zz,−1/3.
For studying bipartite entanglement, we consider an even

number of sites, for which ground states of the Heisenberg
model are nondegenerate, and thus pure. The bipartite en-
tanglement of pure states is well defined by entropies of one
subsystem. Here, for convenience, we choose the linear en-
tropy to quantify the bipartite entanglement between a pair of
qubits and the rest. From Eq.(2), in a similar way to get Eq.
(3), the linear entropy forri j is obtained as

Eij = 1 − Trsri j
2d = 1 − 1

4f1 + 3sGij
zzd2g. s4d

The reduced density matrixri j is only determined by the
correlation functionGij

zz, as is the concurrence and the linear
entropy.

Due to the nearest-neighbor nature of the interaction in
our system, the entanglement between a pair of nearest qu-
bits is expected to be prominent compared with a pair of
non-nearest-neighbor qubits. Thus we focus on the nearest-
neighbor case in the following discussions. For the isotropic
Heisenberg Hamitonian with a PBC, entanglements between
qubits i and i +1 are independent on indexi. However, for
the case of OBC, the concurrenceCii+1 and the linear entropy
Eii+1 must be site dependent due to the breaking of transla-
tional symmetry. Next, we study entanglements using the
exact diagonalization method.

We first diagonalize HamitonianHXXX to obtain the
ground state, from which we calculate the correlation func-
tion Gii+1

zz , and then the pairwise and bipartite entanglements
via Eqs.(3) and (4), respectively. The numerical results for
12 qubits(4069-dimensional Hibert space) are shown in Fig.
1. The entanglements oscillate with a two-site period, and the
concurrence and the linear entropy are 180° out of phase
with each other. The pair with qubits 1 and 2, and the one
with qubitsL−1 andL, display maximal pairwise entangle-
ment(minimal bipartite entanglement). For two qubits inter-
acting via the Heisenberg Hamiltonian, they prefer the maxi-
mally entangled singlet stateuCl=s1/Î2dsu01l− u10ld with
concurrenceC=1. Qubit 1 favors maximal entanglement
with the only nearest-neighbor qubit 2, and results in higher
concurrenceC12. For qubit 2, there is a competition between
qubits 1 and 3, and they both favor being maximally en-
tangled with qubit 2. Qubit 2 shares a large entanglement
with qubit 1, and thus results in less entanglement with qubit
3, and the oscillatory feature appears. As the pair of qubits 1
and 2 have a strong entanglement, the bipartite entanglement
between the pair of qubits with the rest of the system is
relatively suppressed as we have seen from the figure.

It will be instructive to give two extreme examples to
reveal relations between pairwise entanglement and the bi-
parite entanglement between the pair and the rest. The first
one is the singlet state withC=1 andE=0, and the second
one is the maximally mixed state r12
=diags1/4,1/4,1/4,1/4d with C=0 andE=0.75 (maximal

FIG. 1. Ground-state nearest-neighbor con-
currence(square line) and linear entropy(star
line) versus site number forL=12 in the Heisen-
bergXXX model.
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linear entropy). Thus, in general, the above numerical results
and the two simple examples suggest that the more the pair-
wise entanglement, the less the bipartite entanglement. Of
course, this is not a general statement for arbitrary multiqubit
states.

Next, we consider the mean entanglement and study its
relations with ground-state energyE0. The nearest-neighbor
mean concurrence and linear entropy can be defined as

CmsLd ;
1

L − 1o
i=1

L−1

Ci,i+1,

EmsLd ;
1

L − 1o
i=1

L−1

Ei,i+1. s5d

We made numerical calculations for evenL from 4 to 12, and
the entanglements versusL or e0 are shown in Fig. 2, where
e0=E0/L is the ground-state energy per site. The pairwise
entanglement decreases asL or e0 increases, and so does the
bipartite entanglement. More interestingly, the pairwise en-
tanglement decreases linearly withe0. We may obtain an
analytical relation betweenCm ande0 as follows.

The numerical results for the finite lattices show that
Cii+1.0, and thus from Eq.(3) we obtain

Gii+1
zz =

− 2Cii+1 − 1

3
. s6d

From HXXX (1) and after taking into account the SU(2) sym-
metry, we get

e0 =
L − 1

2L
+

3

2L
o
i=1

L−1

Gii+1
zz . s7d

Substituting Eq.(6) into Eq. (7) leads to

e0 = −
L − 1

L
CmsLd, s8d

where we have used the definition of mean concurrence. The
above relation shows that the mean entanglement is propor-
tional to the ground-state energy per site, implying that less
energy gives more pairwise entanglement. Although this re-
lation is obtained for finite lattices, we make a conjecture
that it is valid for any number of lattice sites.

The concurrence and linear entropy obtained for finite
sites of lattice up to 12 are not so close to those for infinite
lattice given by

Cms`d = 2 ln 2 − 1< 0.3863,

Ems`d = 2
3f1 − ln 2s2 ln 2 − 1dg < 0.4882. s9d

This is due to the finiteness of lattice, and also due to the
effects of boundaries. To investigate effects of open bound-
aries on entanglement inlarger systems, we next study the
quantum HeisenbergXY model, which can be solved exactly
by the Jordan-Wigner transformation[36].

B. HeisenbergXY model

The HeisenbergXY Hamiltonian with an OBC is given by

HXY =
J

2o
i=1

N−1

ssixsi+1x + siysi+1yd. s10d

There are two symmetries in the Hamiltonian. One is a U(1)
symmetry sfH ,Szg=0d, and another is aZ2 symmetry
sfH ,Sxg=0d, whereSx=s1x ^ s2x ^ ¯ ^ sNx. They guaran-
tee that reduced density matrixri j of two qubits i and j for
the ground stater is given by Eq.(2). For the lack of SU(2)
symmetry, the correlation functionsGij

zz and Gij
xx are no

longer equal, and then the concurrence is given by

FIG. 2. Mean concurrence(square line) and
mean linear entropy(star line) versusL ande0 in
the HeisenbergXXX model.

BOUNDARY AND IMPURITY EFFECTS ON… PHYSICAL REVIEW E 69, 066118(2004)

066118-3



Cij = maxf0,uGij
xxu − Gij

zz/2 − 1/2g, s11d

determined by two correlation functions.
For the nearest-neighbor cases, two correlation functions

Gii+1
xx andGii+1

zz are dependent, and the latter can be written in
terms of the former as we will see shortly, and thus the
concurrence is only determined by a single correction func-
tion Gii+1

xx . To show this, we use the well-known Jordan-
Wigner mappingsi

+°ci
†pk=1

i−1 expsipck
†ckd [36], under which

HamiltonianHXY exactlymaps to

HXY = Jo
i=1

L−1

sci
†ci+1 + ci+1

† cid s12d

due to the OBC, whereci andci
† are Fermionic annihilation

and creation operators, respectively. Then, in the Fermionic
representation, the two correlation functions can be written
as

zii+1 = kci
†ci+1l,

uii+1 = kci
†cici+1

† ci+1l = 1/4 − ukci
†ci+1lu2, s13d

where we have used the Wick theorem[38], and the fact that
kci

†cil=1/2 for any i. Thus the concurrence is determined
only by one correlation functionkci

†ci+1l,

Cii+1 = 2 maxs0,ukci
†ci+1lu + kci

†ci+1l2 − 1/4d. s14d

To compute the correlation functionkci
†ci+1l, we first di-

agonalize the HamitonianHXY by the following transforma-
tion:

cn = o
k=1

L

gnkc̃k =Î 2

L + 1o
k=1

L

sinS nkp

L + 1
Dc̃k. s15d

After the transformation, the HamiltonianHXY can be written
as

HXY = o
k=1

L

ekc̃k
†c̃k = o

k=1

L

− 2 cosS kp

L + 1
Dc̃k

†c̃k, s16d

whereei is the single-particle energy, andJ=−1 is assumed
for convenience. The ground state is then expressed as

uClGS= c̃1
†c̃2

†, . . . ,c̃L/2
† u0l, s17d

with energyE0=ok=1
L/2 ek. From the above expression of the

ground state, the correlation function is obtained as

kci
†ci+1l = o

k=1

L/2

gi,kgi+1,k. s18d

The combination of Eqs.(14) and (18) gives an exact ana-
lytical expression for the concurrence. By using Eq.(13), the
linear entropy of the two-qubit reduced density matrixrii+1 is
obtained as

Eii+1 = 3/4 − 4ukci
†ci+1lu4 − 2ukci

†ci+1lu2, s19d

which is also analytical. From these analytical expressions,
entanglements are readily calculated numerically for a very
largeL.

Figure 3 displays features of entanglement distribution
over lattice sites, which are similar to those of the Heisen-
berg XXX model. Strong oscillations of entanglements are
more evident. The similarity arises since two qubits interact-
ing via the HeisenbergXY interaction also favor the singlet
state. Near the bulk area, the entanglements oscillate with
nearly the same amplitude with respect to the mean value,
and the boundary effects diminish.

Now, we study the mean entanglements for differentL.
Figure 4 gives the entanglement versusL and the energy per
site. With the increase ofL, the mean concurrence decreases,
while the linear entropy increases, and both saturate for large
L. For a infinite lattice, the concurrence and the linear en-
tropy are given by

Cms`d =
2

p
+

2

p2 −
1

2
< 0.3393,

Ems`d =
3

4
−

4

p4 −
2

p2 < 0.5063. s20d

We see that the concurrence and linear entropy withL=200
are nearly identical to those with infiniteL. From Fig. 4, we
observe that the mean concurrence increases, while the mean
linear entropy decreases with the increase of energy. The
behavior of the mean concurrence is opposite to that in the
HeisenbergXXX model. Here, the lower energy does not
correspond to higher pairwise entanglement.

III. IMPURITY EFFECTS

As we have stated in the Introduction, a linear open
N-qubit chain can be viewed as a ring ofsN+1d-qubit chains

FIG. 3. Ground-state nearest-neighbor concurrence(square line)
and linear entropy(circle line) entanglement versus site number for
L=100 in the HeisenbergXY model.
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with an impurity. In this section, we study single impurity
effects on the entanglement of Heisenberg chains. We con-
sider the HeisenbergXY model described by the Hamiltonian

HXY = o
i=1

N−1
Ji,i+1

2
ssixsi+1x + siysi+1yd s21d

with an OBC. Now, we assume that the single impurity spin
is located in the bulk(site N/2) [39], namely,

JN/2−1,N/2 = JN/2,N/2+1 = J8 = aJ,

Ji,i+1 = J = 1 for otheri , s22d

where a characterizes the relative strength of the coupling
between the impurity qubit and its nearest neighbors. To be
specific, we focus on pairwise entanglement in the following
discussions.

Due to the existence of a single impurity in the bulk, we
do not expect analytical results for entanglement. However,
the Hamiltonian still has the U(1) andZ2 symmetries, so we
can map the Hamiltonian exactly to a Fermionic one, and the
Wick theorem applies. Thus Eqs.(11) and (14) for the con-
currence are valid and applicable to the impurity model. All

FIG. 5. Ground-state nearest-
neighbor concurrence versus site
number forL=100 in the Heisen-
bergXY model with an impurity.

FIG. 4. Mean concurrence(square line) and
mean linear entropy(star line) versusL ande0 in
the HeisenbergXY model.
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we need is to diagonalize aL3L matrix to obtain the coef-
ficientsgnk in the expressioncn=ok=1

L gnkc̃k, and then calcu-
late the correlation functionkci

†ci+1l via the relationkci
†ci+1l

=ok=1
L/2 gik

* gi+1,k. Note that the summation is fromk=1 to L /2
since the system considered is nondegenerate(the single-
particle energyek is not zero) and number of the negative
values ofek areL /2.

From Fig. 5, we see that the impurity leads to additional
oscillations of the pariwise entanglement in the bulk region.
For smalla=0.1, the concurrencesCN/2−1,N/2 and CN/2,N/2+1
are zero. Even the coupling between the impurity qubit and
its nearest neighbors are not zero, the entanglement between
them vanishes due to competition among qubits. For larger
a=0.6, the entanglements between impurity qubit and qubits
L /2+1 andL /2−1 build up, whereCN/2−1,N/2.CN/2,N/2−1,
which also holds fora=1.2.1 anda=2.1. The difference
between the two concurrences results from the choice of
evenN, leading to a nonsymmetry of the entanglement dis-
tribution. We see that even one single impurity has strong
effects on entanglement structure, especially in the region
near the impurity.

From the above analyses, it is expected that there exists a
threshold value ofa, after which the impurity qubit and its
nearest neighbors becomes entangled. In Fig. 6, we plot the
nearest-neighbor concurrences in the bulk region as a func-
tion of a. It is evident that there exist threshold valuesa1 for
concurrenceCN/2−1,N/2 anda2 for concurrenceCN/2,N/2+1. The

threshold valuea2 is slightly larger thana1, and the pairwise
entanglement between the impurity and qubitN/2−1 is al-
ways a little stronger than that between the impurity and
qubit N/2+1 whena.a2. We also observe that the increase
of a suppresses the concurrenceCN/2+1,N/2+2, while it en-
hances the concurrenceCN/2+2,N/2+3. Whena=1 (no impurity
case), all concurrences shown in the figure are almost iden-
tical since we have chosen a largeL=500, which diminishes
the boundary effects in the bulk and the amplitudes of oscil-
lations become very small.

IV. CONCLUSION

In conclusion, we have studied ground-state entangle-
ments in HeisenbergXXXandXY models with an OBC. The
OBC leads to strong oscillations with a two-site period of
entanglement in a pair of nearest-neighbor qubits and bipar-
tite entanglement between the pair and the rest. The maximal
pairwise entanglement and minimal bipartite entanglement
occurs at open ends, and the two kinds of entanglements are
180° out of phase with each other. In both models, the two-
qubit reduced density matrix is determined by only one cor-
relation function, and so do the entanglements. We have
found that the mean entanglement is proportional to the
ground-state energy per site in theXXXmodel. With increase
of the ground-state energy, the mean pairwise entanglement
decreases in theXXX model, while it increases in theXY
model.

We study the effects of a single bulk impurity on en-
tanglement, and find that the impurity leads to additional
oscillations of entanglement in the bulk region. We also find
that there exists threshold values of the relative coupling
strength between the impurity and its nearest neighbors, after
which the impurity becomes entangled with its nearest
neighbors. As the entanglement underlies operations of quan-
tum computation and quantum information processing, the
structures of entanglement found in the present studies are
useful when we make a simulation of quantum systems
where boundary and impurity effects cannot be negligible.
Inside a quantum computer, a quantum register could be an
open chain with around 100 qubits, for which, as we have
shown within the HeisenbergXY model, the boundary effects
are still significant in the bulk. It deserves to make further
studies of boundary effects on a real quantum computer.
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