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Boundary and impurity effects on the entanglement of Heisenberg chains
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We study entanglement of a pair of qubits and the bipartite entanglement between the pair and the rest within
open-ended HeisenbexXX and XY models. The open boundary condition leads to strong oscillations of
entanglements with a two-site period, and the two kinds of entanglements are 180° out of phase with each
other. The mean pairwise entanglement and ground-state energy per siteXiXXhmodel are found to be
proportional to each other. We study the effects of a single bulk impurity on entanglement, and find that there
exist threshold values of the relative coupling strength between the impurity and its nearest neighbors, after
which the impurity becomes pairwise entangled with its nearest neighbors.
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I. INTRODUCTION the couplingdy.1,1=JIn+1n=0. The impurity plays a very im-

Over the past few years much effort has been put intd°rtant role in condensed matter physics, and it will be in-
Studying quantum entang'ement in Various quantum Spiﬁeres.“ng-to Se-e I'[S eﬁeCt on quantum entanglement. |n earl!er
models. At zero temperature, entanglement naturally exists iftudies, impurity effects on entanglement have been consid-
many-body ground states. The systems contain two classe&ied with a three-spin small syste8b]. Here, we consider
finite spin cluster§1-18 such as a ring of qubits, and infi- large spin systems described by the Heisenbergnodel.
nite spin system$19-24, where quantum phase transition  The paper is organized as follows. In Sec. Il A, by exact
[27] may occur. For a ring of qubits interacting via the diagonlization method, we study the ground-state entangle-
HeisenbergK XX Hamiltonian, the ground-state concurrence,ment in the HeisenbergXX model with an OBC. The mean
quantifying entanglement of a pair of qubits, is equal to thenearest-neighbor entanglement is found be proportional to
absolute value of the ground-state energy per[&ifg. Uni-  the ground-state energy per site. For studying systems with a
versal scaling behaviors of quantum entanglement of grountirge number of sites, in Sec. Il B we consider ¢ model
states emerge at a quantum phase transition point in the amwith an OBC, which can be solved exactly by Jordan-Wigner
isotropic XY model [19-21]. Experimentally, the entangled mapping[35]. Entanglements display strong oscillations over
state of magnetic dipoles has been found to be crucial ttattice. With increase of the ground-state energy, the mean
describing magnetic behaviors in a quantum spin systerpairwise entanglement increases in %¥ model, while it
[28]. decreases in thEXX model. In Sec. Ill, we study impurity

In most of the previous studies on entanglement of manyeffects on entanglement of the spin systems described by the
body ground states, a periodic boundary condiiBBC) is XY model, where the impurity is located in the bulk of the
assumed for spin chains. In compounds such ag,Mnd  system. We conclude in Sec. IV.

Fe;, the metal ions within a single molecule form almost a
perfect ring, which can be described by the Heisenberg in-
teraction[29]. On the other hand, spin chains with an open
boundary conditiofOBC) have been used to construct spin A. Heisenberg XXX model

cluster qubits[30,31 for quantum computation and em- , ) o ] )
ployed for quantum communication from one end to another e consider a physical model &f qubits interacting via
[32,33. Perfect state transfer has been obtained via the opdfi€ isotropic Heisenberg Hamiltonian with an OBC,
chain without requiring qubit coupling to be switched on and
off [33]. These investigations reveal that open chains are of
great advantage in implementing quantum information tasks. Hxxx= EE (L + 0011+ OyOiay + 03201417, (1)
Thus the study of the entanglement structure in open spin =1

chains will be of importance as the entanglement underlies .

operations of quantum computing and quantum informatiovherea;=(oix, oy, 0,) is the vector of Pauli matrices ard
processing. Here, we investigate open boundary effects d§ the exchange constants. The positive and negdtiver-
ground-state entanglement. We also note a recent study é¢spond to the antiferromagnetiaFM) and ferromagnetic
quantum entanglement in tR€XZ model in the presence of (FM) case, respectively.

domain walls[34], which can be considered as a kind of The SU2) symmetry([H,S,]=0) is evident, whereS,
OBC. =3N, 6i,/2,a € {x,y,2z. This symmetry guarantees that re-

A linear openN-qubit chain can be viewed as a ring of duced density matriy;; of two qubits, say qubit andj, for
(N+1)-qubit chains with an impurity(N+ 1)th qubif,, where  the ground state has the form{2]

II. BOUNDARY EFFECTS
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FIG. 1. Ground-state nearest-neighbor con-
currence(square ling and linear entropy(star
line) versus site number fdr=12 in the Heisen-
berg XXX model.

1 2 3 4 5 6 7 8 9 10
i
uij 0 0 0
0O w; z O
Pi=1 o v 0 )
Zj W
0 0 0 uij
in the standard basi$00),|01),(10),|11)}.

From the reduced density matrix, the concurrefgé
quantifying the entanglement is readily obtained 29|

Ci,; =2 max0,|z| - uj]=max0,|Gj| - G{f/2 - 1/2]
=max0,/G}] - Gj#2 - 1/2 = max0,- 3G{72 - 1/2),
(€)

WhereGi‘}“=Tr(ala02ap) are correlation functions. The sec-
ond equality follows from the relations between matrix ele-
ments of p;; and correlation functions given by;=(1
+G{)/4 andz;=G’/2. The SUY2) symmetry leads to the
third equality. The fourth equality follows from the inequal-
ity |GZ1=1, which is a special case of a more general resul
that|(A)| <1 for any Hermitian operatoA satisfyingA?=1.
We see that the qubiisand] are entangled iGi*<-1/3.

For studying bipartite entanglement, we consider an eve
number of sites, for which ground states of the Heisenber

model are nondegenerate, and thus pure. The bipartite e%

tanglement of pure states is well defined by entropies of on
subsystem. Here, for convenience, we choose the linear e
tropy to quantify the bipartite entanglement between a pair o
qubits and the rest. From E@), in a similar way to get Eq.
(3), the linear entropy fop;; is obtained as
Ej=1-Tr(pf) =1-3[1+3(GH?. 4
The reduced density matrig; is only determined by the
correlation functionG?% as is the concurrence and the linear

ij
entropy.

Due to the nearest-neighbor nature of the interaction in
our system, the entanglement between a pair of nearest qu-
bits is expected to be prominent compared with a pair of
non-nearest-neighbor qubits. Thus we focus on the nearest-
neighbor case in the following discussions. For the isotropic
Heisenberg Hamitonian with a PBC, entanglements between
qubitsi andi+1 are independent on index However, for
the case of OBC, the concurrenCg,, and the linear entropy
E; .1 must be site dependent due to the breaking of transla-
tional symmetry. Next, we study entanglements using the
exact diagonalization method.

We first diagonalize HamitoniarHyyy to obtain the
ground state, from which we calculate the correlation func-
tion G3%,, and then the pairwise and bipartite entanglements
via Eqgs.(3) and(4), respectively. The numerical results for
12 qubits(4069-dimensional Hibert spacare shown in Fig.

1. The entanglements oscillate with a two-site period, and the
concurrence and the linear entropy are 180° out of phase
with each other. The pair with qubits 1 and 2, and the one
with qubitsL—-1 andL, display maximal pairwise entangle-
ment(minimal bipartite entanglement~or two qubits inter-
Flcting via the Heisenberg Hamiltonian, they prefer the maxi-
mally entangled singlet statV)=(1/12)(|01)—|10)) with
concurrenceC=1. Qubit 1 favors maximal entanglement
nwith the only nearest-neighbor qubit 2, and results in higher
concurrenceC,,. For qubit 2, there is a competition between
ubits 1 and 3, and they both favor being maximally en-

eangled with qubit 2. Qubit 2 shares a large entanglement
With qubit 1, and thus results in less entanglement with qubit
%, and the oscillatory feature appears. As the pair of qubits 1
and 2 have a strong entanglement, the bipartite entanglement
between the pair of qubits with the rest of the system is
relatively suppressed as we have seen from the figure.

It will be instructive to give two extreme examples to
reveal relations between pairwise entanglement and the bi-
parite entanglement between the pair and the rest. The first
one is the singlet state witB=1 andE=0, and the second
one is the maximally mixed state pqo
=diag1/4,1/4,1/4,1/4 with C=0 andE=0.75 (maximal

066118-2



BOUNDARY AND IMPURITY EFFECTS ON.. PHYSICAL REVIEW E 69, 066118(2004)

0.58 . . . 0.58
0.561 0.561
0.541 0.541
0.52f 0.52f
€ LI.IE
¢ 05f ¢ 05f FIG. 2. Mean concurrencesquare ling and
o mean linear entropystar line versusL andey in
0.48¢ 0.48} the Heisenberg{XX model.
0.461 0.461
0.44} 0.44}
0.42 : : : 0.42— : : :
4 6 8 10 12 -0.4 -0.42 -0.41 -0.4
L e

0

linear entropy. Thus, in general, the above numerical results -
and the two simple examples suggest that the more the pair- €==—"CnlL), (8
wise entanglement, the less the bipartite entanglement. Of
course, this is not a general statement for arbitrary multiqubifyhere we have used the definition of mean concurrence. The
states. above relation shows that the mean entanglement is propor-
Next, we consider the mean entanglement and study itgonal to the ground-state energy per site, implying that less
relations with ground-state energy. The nearest-neighbor energy gives more pairwise entanglement. Although this re-
mean concurrence and linear entropy can be defined as  |ation is obtained for finite lattices, we make a conjecture
that it is valid for any number of lattice sites.
The concurrence and linear entropy obtained for finite
Cr(l) = L — 12 Ciji+1s sites of lattice up to 12 are not so close to those for infinite
=1 lattice given by

Cu(®)=2In 2 -1~ 0.3863,

L-1
> Eijna (5
i=1

En(L) = -1

En(®)=5[1-1n 22 In 2 - 1)] ~ 0.4882. (9)

We made numerical calculations for eveffrom 4 to 12, and
the entanglements versusor e, are shown in Fig. 2, where
e=E&p/L is the ground-state energy per site. The pairwis
entanglement decreaseslasr g; increases, and so does the
bipartite entanglement. More interestingly, the pairwise en
tanglement decreases linearly widyg. We may obtain an
analytical relation betwee@,, ande, as follows.

The numerical results for the finite lattices show that B. HeisenbergXY model
Cii+1>0, and thus from Eq3) we obtain

This is due to the finiteness of lattice, and also due to the
£effects of boundaries. To investigate effects of open bound-
aries on entanglement iarger systems, we next study the
quantum Heisenberg§Y model, which can be solved exactly
by the Jordan-Wigner transformati$&o].

The HeisenberXY Hamiltonian with an OBC is given by

ng - - 2Cii+l -1 (6) N-1
it 3 ' Hxy= EE (OixTisix + TiyTisay) - (10
i=1

From Hyxx (1) and after taking into account the &) sym-

metry, we get There are two symmetries in the Hamiltonian. One is(&)U

symmetry ([H,S,]=0), and another is aZ, symmetry

L-1 ([H,2,]=0), whereX, =01, ® 09, ® - -+ @ apx They guaran-
€= L-1 + 32 GZ,. (7)  tee that reduced density matriy of two qubitsi andj for
2L 2Lin the ground statg is given by Eq(2). For the lack of S(R)
symmetry, the correlation function&* and G are no
Substituting Eq(6) into Eq.(7) leads to longer equal, and then the concurrence is given by
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Ci; = max0,|GY| - Gf72 - 1/2], (11) 08
determined by two correlation functions. 0.74 T
For the nearest-neighbor cases, two correlation functions o6l

G}, andG}%, are dependent, and the latter can be written in
terms of the former as we will see shortly, and thus the
concurrence is only determined by a single correction func-
tion Gi},. To show this, we use the well-known Jordan-
Wigner mappingo; '—>cTH exp(lwckck) [36], under which
HamiltonianHyy exactlymaps to

0.5

ii+1

(&)

L-1 0.2
Hyy =32 (Clciug + ¢10) (12) o1l
= '
due to the OBC, where, andc/ are Fermionic annihilation % 20 ' 60 ' 100

40
and creation operators, respectively. Then, in the Fermionic i

representation, the two correlation functions can be written
as

80

FIG. 3. Ground-state nearest-neighbor concurrésgeare ling
and linear entropycircle line) entanglement versus site number for

L=100 in the Heisenber¥Y model.

Zijy1 = <C Ci+1)

Eiis1 = 3/4 — 4(clciup|* - 2(cleiD?, (19

which is also analytical. From these analytical expressions,
where we have used the Wick theor§d8], and the fact that entanglements are readily calculated numerically for a very
<cﬁci>:1/2 for anyi. Thus the concurrence is determined largelL.
only by one correlation functiotc;rcm}, Figure 3 displays features of entanglement distribution
over lattice sites, which are similar to those of the Heisen-
berg XXX model. Strong oscillations of entanglements are
more evident. The similarity arises since two qubits interact-
ing via the HeisenberXY interaction also favor the singlet
state. Near the bulk area, the entanglements oscillate with
nearly the same amplitude with respect to the mean value,
and the boundary effects diminish.

Now, we study the mean entanglements for different
Figure 4 gives the entanglement versuand the energy per
site. With the increase df, the mean concurrence decreases,
while the linear entropy increases, and both saturate for large
L. For a infinite lattice, the concurrence and the linear en-
tropy are given by

Ui =(CCiC1Cian) = 14 = [(clCi D2, (13

Civ1=2 max0,[(cfciup)| +(clei)? - 1/4). (14

To compute the correlation functio(rciTcHl), we first di-

agonalize the HamitoniaHyy by the following transforma-
tion:

1k_ (15)

E OniCk =

After the transformation, the Hamiltoniaty, can be written
as

L

k - 2 2 1
Hyy = >, 681 = E -2 cos( T )clck, (16) Cp(®©) ==+ — - = =~ 0.3393,
e e L+1 ™ 7 2
wherege; is the single-particle energy, adé -1 is assumed 3 4 2
for convenience. The ground state is then expressed as Em(%) = 1A 2T 0.5063. (20)

(17)

with energy&,==L2 €. From the above expression of the
ground state, the correlation function is obtained as

|¥)ss=Creh, ... ,EI,2|0>, We see that the concurrence and linear entropy witf200

are nearly identical to those with infinite From Fig. 4, we
observe that the mean concurrence increases, while the mean
linear entropy decreases with the increase of energy. The
behavior of the mean concurrence is opposite to that in the
HeisenbergXXX model. Here, the lower energy does not

correspond to higher pairwise entanglement.

L/2

(clciap) = kE 0i kDi+1 k- (18)
=1

The combination of Eqe14) and (18) gives an exact ana-

. . . IIl. IMPURITY EFFECTS
lytical expression for the concurrence. By using Eg), the

linear entropy of the two-qubit reduced density magsjx; is
obtained as

As we have stated in the Introduction, a linear open
N-qubit chain can be viewed as a ring(®f+ 1)-qubit chains
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with an impurity. In this section, we study single impurity Jii+1=J=1 for otheri, (22
effects on the entanglement of Heisenberg chains. We con-

sider the HeisenbengY model described by the Hamiltonian where a characterizes the relative strength of the coupling

Nt between the impurity qubit and its nearest neighbors. To be
Jii+1 specific, we focus on pairwise entanglement in the following
HXY: 2 ’T(O-ixa-Hlx + O-iyo-i+ly) (21) discussions.
Due to the existence of a single impurity in the bulk, we
) ) ) ) . do not expect analytical results for entanglement. However,
with an OBC. Now, we assume that the single impurity Spinihe Hamiltonian still has the (1) andZ, symmetries, so we
is located in the bulksite N/2) [39], namely, can map the Hamiltonian exactly to a Fermionic one, and the
Wick theorem applies. Thus Eqdll) and (14) for the con-

i=1

Inz—1n2 = Ine e+ =J' = ad, currence are valid and applicable to the impurity model. All
0.8 0.8
I a=0.1 I «=0.6
0.6 0.6
= 04 0.4
O
0.2 0.2
0 . 0
0 50 100 0 50 100 FIG. 5. Ground-state nearest-
neighbor concurrence versus site
08 0.8 number forL=100 in the Heisen-
I a=1.2 I o=2 berg XY model with an impurity.
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O
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we need is to diagonalizelaxX L matrix to obtain the coef-
ficients g, in the expressior(rn:E,&:l OniCy, and then calcu-
late the correlation functiotc/c;,,) via the relation(c/c;, )
=32 g1 Gi+1 Note that the summation is frokr1 toL/2
since the system considered is nondegeneftie single-
particle energye, is not zerg and number of the negative

values ofe, areL/2.
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threshold valuey, is slightly larger tharny,, and the pairwise
entanglement between the impurity and qu¥i2-1 is al-
ways a little stronger than that between the impurity and
qubitN/2+1whena> a,. We also observe that the increase
of a suppresses the concurrenCgy,.qn2+2 While it en-
hances the concurren@ .o n/2+3 Whena=1 (no impurity
case, all concurrences shown in the figure are almost iden-
tical since we have chosen a laige 500, which diminishes
the boundary effects in the bulk and the amplitudes of oscil-
lations become very small.

IV. CONCLUSION

In conclusion, we have studied ground-state entangle-
ments in Heisenberg XX and XY models with an OBC. The
OBC leads to strong oscillations with a two-site period of
entanglement in a pair of nearest-neighbor qubits and bipar-
tite entanglement between the pair and the rest. The maximal
pairwise entanglement and minimal bipartite entanglement
occurs at open ends, and the two kinds of entanglements are
180° out of phase with each other. In both models, the two-
qubit reduced density matrix is determined by only one cor-
relation function, and so do the entanglements. We have
found that the mean entanglement is proportional to the
ground-state energy per site in tKXX model. With increase
of the ground-state energy, the mean pairwise entanglement
decreases in th&XXX model, while it increases in th¥Y
model.

We study the effects of a single bulk impurity on en-
tanglement, and find that the impurity leads to additional

From Fig. 5, we see that the impurity leads to additionaloscillations of entanglement in the bulk region. We also find

oscillations of the pariwise entanglement in the bulk region
For smalla=0.1, the concurrenceSyy ;-1 Nz and Cyjz nz+1

that there exists threshold values of the relative coupling

strength between the impurity and its nearest neighbors, after

are zero. Even the coupling between the impurity qubit andvhich the impurity becomes entangled with its nearest

its nearest neighbors are not zero, the entanglement betwe8gighbors. As the entanglement underlies operations of quan-
them vanishes due to competition among qubits. For largefum computation and quantum information processing, the
«=0.6, the entanglements between impurity qubit and qubitstructures of entanglement found in the present studies are
L/2+1 andL/2-1 build up, whereCyj-1n2>Chaniz-1,  USeful when we make a simulation of quantum systems
which also holds forw=1.2>1 anda=2>1. The difference Where boundary and impurity effects cannot be negligible.
between the two concurrences results from the choice dnside a quantum computer, a quantum register could be an
evenN, leading to a nonsymmetry of the entanglement dis-open chain with around 100 qubits, for which, as we have
tribution. We see that even one single impurity has stronghown within the HeisenbepgY model, the boundary effects
effects on entanglement structure, especially in the regioare still significant in the bulk. It deserves to make further
near the impurity. studies of boundary effects on a real quantum computer.
From the above analyses, it is expected that there exists a
threshold value ofy, after which the impurity qubit and its ACKNOWLEDGMENTS
nearest neighbors becomes entangled. In Fig. 6, we plot the This work has been supported by an Australian Research
nearest-neighbor concurrences in the bulk region as a fun&ouncil Large Grant and Macquarie University. We ac-
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